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Stochastic multiplicative population
growth predicts and interprets Taylor’s
power law of fluctuation scaling

Joel E. Cohen1, Meng Xu1 and William S. F. Schuster2

1Laboratory of Populations, The Rockefeller University and Columbia University, 1230 York Avenue, Box 20,
New York, NY 10065, USA
2Black Rock Forest Consortium, 65 Reservoir Road, Cornwall, NY 12518, USA

Taylor’s law (TL) asserts that the variance of the density (individuals per area

or volume) of a set of comparable populations is a power-law function of the

mean density of those populations. Despite the empirical confirmation of TL

in hundreds of species, there is little consensus about why TL is so widely

observed and how its estimated parameters should be interpreted. Here, we

report that the Lewontin–Cohen (henceforth LC) model of stochastic popu-

lation dynamics, which has been widely discussed and applied, leads to a

spatial TL in the limit of large time and provides an explicit, exact interpret-

ation of its parameters. The exponent of TL exceeds 2 if and only if the LC

model is supercritical (growing on average), equals 2 if and only if the

LC model is deterministic, and is less than 2 if and only if the LC model is

subcritical (declining on average). TL and the LC model describe the spatial

variability and the temporal dynamics of populations of trees on long-term

plots censused over 75 years at the Black Rock Forest, Cornwall, NY, USA.
1. Introduction
Understanding the spatial and temporal variability of natural and engin-

eered living populations is a central challenge of ecology. Population

fluctuations to low densities may increase risks of extinction, frustrating

attempts at species conservation, and may cause genetic bottlenecks, which

can have enduring evolutionary consequences. Fluctuations of fisheries, for-

ests and agricultural crops have economic consequences and may directly

affect human supplies of food, timber, fibre and fuel. High fluctuations of

the densities of arthropod and molluscan vectors of human as well as

animal diseases may increase risks of disease transmission. Hence it is

important for scientific and practical reasons to understand the pattern

and origins of fluctuations in population densities.

An important generalization about population variability is Taylor’s law (TL).

TL asserts that the variance of the density (individuals per area or volume) of a set

of comparable populations is a power-law function of the mean density of those

populations. TL is one of the most widely tested empirical patterns in ecology

and is the subject of an estimated thousand papers [1,2]. It has been confirmed

for hundreds of species or groups of related species in field observations [3–5]

and laboratory experiments with stem cells [6] and ecological microcosms [7–9].

Numerous models have been proposed to explain TL under various assumptions

[10–16] and probability distributions compatible with TL have been analysed

[17–24]. Nevertheless, it remains unclear why the ecological pattern called TL is

so widely observed, how its estimated parameters should be interpreted in

terms of underlying population dynamics and when it should be expected to fail.

TL presupposes that the mean and variance of population density exist and

are finite. TL asserts that

variance ¼ aðmeanÞb; a . 0: ð1:1Þ

TL holds with b ¼ 2 in populations with a constant coefficient of variation (CV)
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of population density, such as certain cell populations [2,6],

because then the variance is proportional to (mean)2.

TL has multiple forms, depending on how averaging is done

in space and time. The most familiar forms of TL suppose that

multiple spatially distinct populations (plots of trees, Petri

dishes of bacteria) are censused at multiple points in time. The

estimated population densities may be arranged in a rectangular

table or matrix, with each row corresponding to one population

and each column corresponding to one census date. If the mean

and the variance over time of each population are calculated, as

in Kaltz et al. [8], one examines a temporal form of TL by plotting

the logarithm of the variance as a function of the logarithm of

the mean, with one point per spatially distinct population

(i.e. one point (log mean, log variance) per row of the data

matrix). A spatial TL considers the same array of data but

reverses the roles of space and time, as in Taylor et al. [24]. For

each census (column of the matrix), the mean and the variance

over distinct populations are computed, and then the log var-

iance is plotted as a function of the log mean, with one point

(log mean, log variance) per census (i.e. per column of the data

matrix). Here, we empirically test a spatial TL for tree popu-

lations at the Black Rock Forest (BRF), Cornwall, NY, USA [25].

By exact mathematical calculations (see appendix A), not

simulations, we proved that, under general conditions, the

Lewontin–Cohen (LC) model [34] of stochastic population

dynamics predicts a spatial TL in the limit of large time and pro-

vides an explicit, exact interpretation of its parameters. This

means that, for spatially distinct populations with dynamics

governed by the LC model, with identical parameters in every

population, as time increases, the spatial mean and the spatial

variance of populations within a census come increasingly

close to a power-law pattern described by TL. The exponent

of TL exceeds 2 if and only if the LC model is supercritical

(growing on average), equals 2 if and only if the LC model is

deterministic, and is less than 2 if and only if the LC model

is subcritical (declining on average). We shall show that the

LC model describes the temporal dynamics and TL describes

the spatial variability of populations of trees in long-term

plots censused over 75 years at BRF.

The LC model was first published in the same decade as

Taylor’s original report [3], has been widely discussed and

applied [35–37], and until now has remained unconnected

with TL. Our results show that, for large time, TL holds

with parameters given by explicit, exact functions of

population-dynamic parameters in the LC model when the

assumptions of the LC model are valid. This connection

links an ecological pattern (TL) with a population-dynamic

model (LC) that can explain it.
2. Theoretical and empirical results
(a) Lewontin – Cohen model of stochastic multiplicative

population growth
Suppose N(t) . 0 represents the density of a population at

time t for each t ¼ 0, 1, 2, . . . . The initial population density,

N(0), may be a fixed positive number or a random variable

that takes positive values with probability 1. Suppose A(t)

represents the random factor by which population density

grows or declines from time t to time tþ 1, so that

NðtÞ ¼ Aðt� 1ÞAðt� 2Þ � � �Að0ÞNð0Þ; t ¼ 1; 2; . . . : ð2:1Þ
The LC model assumes that fA(t), t ¼ 0, 1, 2,. . .g are inde-

pendently and identically distributed (iid) and that each A(t)
has finite mean M . 0 and finite variance V . 0, and finite

CV(A(0)) ¼ V1/2/M . 0. Here, CV(A(0)) means the CV

(s.d./mean) of A(0). When N(0) is a random variable, the

LC model further assumes that N(0) is independent of all

fA(t), t ¼ 0, 1, 2,. . .g.
This model, sometimes called a geometric random walk

(as opposed to the ordinary additive random walk), assumes

that the combined effect of any demographic and environ-

mental stochasticity is adequately represented by the

multiplicative factor A(t), which is tantamount to ignoring

demographic stochasticity at small population sizes. It

assumes no density dependence of A(t) on N(t) at either

low or high population densities (other possible assump-

tions are considered by Perry and co-workers [16,23,24]). It

assumes no autocorrelations in A(t): knowing the value of

A(t) gives no information about the distribution of any past

or future A(t0).
This model and generalizations have been used for

random breakage of rocks, the random accumulation of

wealth and many other applications [38,39]. The assumption

that A(t), t ¼ 0, 1, 2,. . . are iid has recently been tested directly

and confirmed in detail for fisheries stocks [40]. Here, it will

be tested and confirmed for forest trees.

We always use log ¼ log10. The expectation is denoted by

E(.). The spatial mean and the spatial variance of population

density over spatially distinct replicates (independent realiz-

ations using identical parameters) at time t are, respectively,

E(N(t)) and Var(N(t)) ¼ E[(N(t))2] 2 [E(N(t))]2. Define

logm :¼ lim
t!1

1

t
log EðNðtÞÞ ð2:2Þ

and

logb :¼ lim
t!1

1

t
log VarðNðtÞÞ: ð2:3Þ

Then, in the LC model, the limits in (2.2) and (2.3) exist

and are independent of N(0) and, in the limit of large time,

the mean and variance of population density at time t grow

exponentially with increasing time t in proportion to mt and

bt (m . 0, b . 0), respectively. For the LC model (appendix

A, theorem A.1),

logm ¼ log EðAð0ÞÞ ¼ log M ð2:4Þ

and

logb ¼ log E½ðAð0ÞÞ2� ¼ logðV þM2Þ: ð2:5Þ

We now write TL (1.1) as Var(N(t)) ¼ a(E(N(t)))b. Taking

logs of both sides yields a mathematical equivalent, the

log-linear form of TL:

log VarðNðtÞÞ � b log EðNðtÞÞ ¼ log a : ð2:6Þ

By definition, we say that TL applies to N(t) in the limit as

t!1 if and only if there exist real constants a . 0 and b such

that

lim
t!1
½log Var(NðtÞ)� b log E(NðtÞ)� ¼ log a: ð2:7Þ

We show (appendix A, theorem A.2) that if TL applies

to N(t) exactly for all t (as defined in (2.6)) or in the limit as

t!1 (as defined in (2.7)), then log b ¼ blog m, where b is
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the exponent in TL. If log m = 0, then

b ¼ logb

logm
: ð2:8Þ

Because the numerator and the denominator on the right-

hand side of (2.8) are independent of N(0), so is b. Moreover

(appendix A, theorem A.3), if M = 1, then the LC model

implies that N(t) obeys TL in the limit as t!1 with

a ¼ E½ðNð0ÞÞ2�
½EðNð0ÞÞ�b

and b ¼ log½V þM2�
log M

¼ log½M2fðCVðAð0ÞÞÞ2 þ 1g�
log M

¼ 2þ log½ðCVðAð0ÞÞÞ2 þ 1�
log M

:

ð2:9Þ

Equations (2.9) connect the initial population density N(0)

and the mean M and variance V of A(t) with the coefficient a
and exponent b of TL. When N(0) has zero variance (i.e. is a

constant with probability 1), then the formula for a simplifies

to a ¼ (N(0))22b. For the population density ratio defined as

h(t) ¼ N(t)/N(0), h(0) ¼ 1 with probability 1 and h(t) obeys

TL as t!1 with a ¼ (1)22b ¼ 1 and b given by (2.9) (appen-

dix A, corollary to theorem A.3). These key formulae are

sufficiently non-obvious to justify discussion.

First, how do the parameters of the LC model constrain

the parameters of TL? From the mean M and variance V or

CV(A(0)) of A(0), we can calculate b from the right-hand

equation of (2.9), substitute that into the exponent in the

denominator of the left-hand equation, and determine a
from the mean and second moment of N(0). For any M
such that 0 , M, M = 1, we cannot have b ¼ 2 if V . 0.

Also, for any M such that 0 , M, M = 1, if V ¼ 0 (in that

case the LC model is deterministic), then b ¼ 2 and

a ¼ [CV(N(0))]2 þ 1 (from (2.9)). Ballantyne [41] pointed

out a connection between deterministic models (V ¼ 0) and

TL exponent b ¼ 2.

On the other hand, for a fixed V . 0, we have 0 , M , 1

(population density decreases on average) if and only if

b , 2. In particular, b ¼ 1 (the population variance depends lin-

early on the population mean) if and only if V ¼M 2 M2, and

b ¼ 0 (the population variance is independent of the popu-

lation mean) if and only if V ¼ 1 2 M2, and b decreases from

an upper limit of 2 (as V � 0) towards 21 (as V � 1). For a

fixed V . 0, b . 2 if and only if M . 1, when the LC model

is supercritical (population density increases on average). For

a fixed M . 1, the bigger V is, the bigger b is.

Conversely, how do the parameters of TL constrain

the parameters of the LC model? When b = 2 and N(0) is a

positive constant,

Nð0Þ ¼ a1=ð2�bÞ: ð2:10Þ

However, a and b are not sufficient to calculate separately

the values of the mean M and the variance V of A(t) because

they are confounded in the right-hand side of (2.9). But given

b and M . 0, M = 1, we find

V ¼Mb �M2; ðCVðAð0ÞÞÞ2 ¼ Mb�2 � 1: ð2:11Þ

Thus b and M are not each free to vary independently of

the other: when M = 1, then (CV(A(0)))2 . 0 if and only if

(b 2 2)logM . 0, and (CV(A(0)))2 ¼ 0 if and only if (b 2 2)

logM ¼ 0.
A transparent example, not intended to be biologically

realistic, is informative on a significant point of theory.

Suppose A(0) ¼ d1 ¼ 7/10 with probability 1/2, and

A(0) ¼ d2 ¼ 6/5 with probability 1/2, and all A(t) are iid

copies of A(0), as the LC model assumes. Then, from (2.9)

b ¼ logðd2
1 þ d2

2Þ � log 2

logðd1 þ d2Þ � log 2
� 0:6946:

But 0 , b , 1 is impossible for exponential dispersion

models and Tweedie distributions ([19, p. 133, theorem 2];

[42, p. 130, table 4.1]). Hence, this example demonstrates

that exponential dispersion models and Tweedie distri-

butions do not include all distributions that obey TL in the

limit of large t. A comprehensive statistical theory of TL

will have to go beyond exponential dispersion models and

Tweedie distributions.

(b) Empirical example from Black Rock Forest
These theoretical analyses calculated, for each time t,
the spatial mean E(h(t)) of the population density ratio

h(t) ¼ N(t)/N(0) and the spatial variance Var(h(t)) of the

population density ratio, averaging over spatially distinct

replicates (or ‘realizations’ in probability theory) of the LC

population process at a given time, not averaging over

time. The analyses demonstrated that as t gets larger,

logVar(h(t)) 2 b log E(h(t)) approaches log a ¼ log 1 ¼ 0.

Testing this theory using data from six long-term study

plots in BRF [25], Cornwall, NY, required three steps. We

give the data in the electronic supplementary material.

Step 1 used time-series of censuses of the trees to test

whether the LC model described the temporal dynamics

of tree population density by plot. Were the changes in

population density independently and identically distribu-

ted over time and plots? Yes. So it was meaningful to

calculate the mean M and the variance V of the changes

A( p,t) ¼ N( p,tþ 1)/N( p,t) pooled from all six plots,

labelled p ¼ 1, . . . , 6, at all census dates t except for the

last census.

Step 2 interpreted six plots as spatially distinct replicates

of the LC model. With this empirical interpretation, we tested

whether the spatial variation of the population density ratio

of trees h(t) among the six plots, calculated at each of the

five most recent censuses (1988, 1994, 1999, 2004 and 2009),

was described by the spatial TL. Was the logarithm of the

variance (over six plots in each census) of the population den-

sity ratio h(t) linearly related to the logarithm of the mean

(over six plots in each census) of the same population density

ratio? Yes. So a spatial TL held.

As step 1 was approximately consistent with the LC

model, and as step 2 was approximately consistent with a

spatial TL, step 3 tested whether the slope b of the spatial

log-linear TL in step 2 was consistent with the slope predicted

from the LC model in step 1 (see appendix A) and whether

the LC model in finite time could predict the observed var-

iance. Did the LC model and the spatial TL fit together as

theory predicted? Yes.

We give the details of the statistical analysis in appendix A

and summarize here. In each of six long-term plots, the

number of trees with diameter at breast height� 1 inch

(2.54 cm) was counted 15 times in the calendar years t¼ 1931,

1936, 1941, . . . , 2009 at intervals of nearly 5 years. For each plot

p and each census year t, the density of trees N( p,t) was calculated
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Figure 1. Time-series of the ratio of the density of trees in a census year to the density of trees in each preceding census year approximately 5 years earlier, shown
as a function of the earlier year. Solid markers indicate control plots. Open markers indicate plots thinned in 1930 before long-term observations began. The year-
specific spatial means (grey stars) of Ep(A( p,t)) over six plots p were calculated at t ¼ 1931, 1936, . . . , 2004, respectively. They differed little from the grand mean,
0.9535, the average of the 84 values of A( p,t) (dotted line). The least-squares regression line (solid line) fitted to all 84 values of A( p,t) as a function of t had a
slope not significantly different from 0. Also, all six regression lines fitted to the 14 values of A( p,t) as a function of t for each plot p separately had slopes not
significantly different from 0 (lines not shown). Thus, the average ratios did not change over years, by plot separately or pooled over plots.
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Figure 2. Frequency histogram of 84 values of A( p,t). The bootstrapped
mean and variance of A( p,t), with the corresponding 95% CI, were recorded
in appendix A, table 1.
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as the number of trees divided by the corresponding area of

plot p, and the ratio of successive population densities

A( p,t) ¼N( p,t þ dt)/N( p,t) was calculated using a nearly

5-year time step dt from the data of 1931 through to 2009.

Figure 1 shows the six time-series of A( p,t), one time-series for

each plot p. For each plot p separately, the first-, second- and

third-order autocorrelations of the time-series of 14 values of

A( p,t) were not statistically significant at the 0.05 level. Statistical

tests failed (with one exception) to reject the null hypotheses that

A( p,t) were independently and identically distributed (appendix

A). Hence, the LC model described acceptably the temporal

dynamics of tree population density in these data. Figure 2

shows the frequency histogram of the 84 (¼6 plots � 14 intervals

of time) values of A( p,t) when A( p,t) from all plots were pooled.

Estimating M and V (appendix A and table 1), the key

parameters of the LC model, completed step 1.

In step 2, we tested whether a spatial TL described the

spatial variability of the population density ratio in these

long-term plots in BRF (figure 3).

In step 3, we compared the slope of the log-linear TL with

the predicted slope from the LC model. The 95% confidence

interval (CI) obtained from the LC model overlapped the corre-

sponding 95% CI of the fitted log-linear TL (table 1). The 95%

CI of the log variance predicted by the LC model contained

the observed log variance from the data (figure 3 and table 2).

The theory developed above predicted that when the LC

model leads to a spatial TL and when V . 0, the slope b will

be less than 2 if and only if M , 1, that is, if and only if the

average population declines over the long term. In BRF, the

total number of trees in the six study plots declined from

551 in 1931 to 221 in 2009 and the density fell from 1718 to

689 stems per hectare. The trajectories from 1931 to 2009 of
tree population density in each plot, divided by the popu-

lation density in that plot in 1931, varied from plot to plot

but had a generally declining trend (figure 4a). The median

bootstrapped M was less than 1 and, as predicted, the

median estimate of b from the LC model was less than 2

(table 1). Trajectories of relative population density simulated

according to the assumptions of the LC model qualitatively

resembled the observed trajectories (figure 4b). These trajec-

tories were the cumulative products of A( p,t) sampled

randomly, with replacement, from the observed values of

A( p,t), regardless of plot or date. Thus the LC model qualitat-

ively linked long-term decline or growth in population

density with the slope of the spatial TL.
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Figure 3. Log10 variance of population density ratio in Black Rock Forest as a function of log10 mean population density ratio from the five most recent censuses. The
slope and intercept of the solid thick black line were estimated from the single linear regression using observed population density ratios in 1988, 1994, 1999,
2004 and 2009. Two thick dashed curves show the lower and upper 95% CIs for the fitted linear regression, indicating the region where the regression line
would probably lie. The thin solid line connects open circles whose ordinates are the median estimates of the log variance from the LC model, log variance
(t) ¼ g � log mean(t) þ r(t), t ¼ 11, 12, . . . , 15, from 10 000 bootstrapped samples of A( p,t), using formulae (A 11) and (A 12) for h(t) ¼ N(t)/N(0).
The upper and lower thin dashed lines connect open circles whose ordinates are respectively the 95% upper and lower bounds of the estimated log variance
from the LC model based on the same bootstrap samples. For every census, the observed variance fell within the 95% CI predicted by the LC model. The
95% CI for log variance(t) ¼ g � log mean(t) without the adjustment for finite t included none of the observed values of log variance. See appendix A for
details of methods and table 2 for numerical results.
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3. Discussion and conclusion
The LC model provided a population-dynamical mechanism

to explain a spatial TL in the limit of large time, according

to an explicit mathematical calculation. Empirically, BRF

data on the log variance and log mean of population den-

sity in the five most recent censuses were consistent with a

spatial TL. BRF data on the changes in population density

over 15 quinquennial censuses in six plots were consistent

with the dynamic assumptions of the LC model. Using

only the BRF data for the changes in population density

and the observed mean population density, the LC model

produced finite-time estimates of variance that were consist-

ent with the observed variance in the five most recent

censuses (figure 3 and table 2).

The LC model predicted log variance as a linear function

of log mean plus a time-dependent residual term ((A 13) in

appendix A). In the limit of large time, the size of this

residual approached zero and the LC model gave a close

approximation of the observed log variance. At finite time,

the residual lowered the estimated log variance compared

with the observed log variance. When plotted across different

censuses, the log variance predicted by the LC model was a

nonlinear function of the log mean. As time increased, the

discrepancy between the log variance predicted by the

LC model and the log variance observed or fitted by TL

gradually diminished (figure 3).

Our analysis differed from many prior studies of TL

in deriving TL from an existing, widely recognized model of

population dynamics; in being exact, not a simulation; and in
providing a detailed empirical test of the dynamic micro-

structure of the model in addition to the predicted TL. Prior

models of TL covered a range of abstraction, from pheno-

menological to mechanistic [3–5,16,23,24,43–46]. Among the

phenomenological models [13], some assumed a power–law

relationship between the variance and mean [18,19,22,42] or

imposed a constraint on the parameters of probability distri-

butions that was equivalent to such an assumption [17].

Some phenomenological models [20,21] preceded Taylor’s

first paper [3] on the topic. By contrast, mechanistic models

derived TL analytically or by simulation from models of

ecological interactions or population dynamics [10–12,14,15,

47–49]. The examples just given do not provide a complete

review, nor does the much longer review by Eisler et al. [1],

but they do suggest the diversity of approaches others have

used, and how they have differed from ours.

The absence of statistically detectable autocorrelation in

the six time-series of multiplicative increments A( p,t) may

seem surprising but may have at least three simple expla-

nations. First, the time between successive censuses is

5 years, more or less. Even if the factor of change in population

density in a plot is autocorrelated from year y to the next year

yþ 1, an exponential decay of autocorrelation with increasing

lag d between censuses in years y and yþ d and our finite

sample sizes may reduce the 5-year autocorrelation, if it

exists, to statistical insignificance. Second and third, for each

plot, the autocorrelation in A( p,t) between year y and yþ 1

may be reduced by independent demographic stochasticity

affecting the growth and death of trees, and by environmental

stochasticity if the weather affecting the growth and survival
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Figure 4. Trajectories of tree population density, relative to population density in 1931 (a) of six long-term study plots in Black Rock Forest, and (b) of six illustrative
simulations of the LC model. In both panels, grey stars showed the mean values at each time. (a) The observed relative tree population density N( p,t)/N( p,1931) for
t ¼ 1931, 1936, 1941, . . . , 2009, p ¼ 1, . . . , 6. (b) The cumulative products of randomly selected values of the population growth factor A( p,t), namely
A( p,t 2 5)A( p,t 2 10) � � � A( p,1931), for t ¼ 1936, 1941, . . . , 2009, p ¼ 1, . . . , 6. To form each cumulative product, each A( p,t) was
sampled with replacement from the set of 84 observed values of A( p,t). The six lines in (b) illustrate six independent and identically distributed trajectories
of the LC model.
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of trees differs from year to year. The lack of autocorrelation in

A( p,t) does not imply a lack of autocorrelation for N( p,t).
Indeed, the first-order autocorrelation of time-series of N( p,t)
is significant for each plot.

Further research is required to determine how plausible

forms of density dependence would affect our conclusions

and what happens when M ¼ 1. Would Markovian

dependence in the sequence fA(t)g of factors of change in

population density lead to an asymptotic spatial TL? How

would the parameters of a Markovian process be related to

the parameters of TL? Can population-dynamical models

lead to a temporal form of TL? TL is so widely observed in

nature that improved understanding of its theoretical bases

deserves priority.
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Malka and Michael Plank, two anonymous reviewers, the Associate
Editor Minus van Baalen and the Editor-in-Chief Michael P. Hassell.
We acknowledge with thanks the support of US National Science Foun-
dation grant (no. EF-1038337), the assistance of Priscilla K. Rogerson and
the hospitality of the family of William T. Golden during this work.
Appendix A

(a) Lewontin – Cohen model
Theorem A.1. For the LC model, assume N(0) is a random
variable that takes positive values with probability 1, has finite
expectation 0 , E(N(0)) , 1 and finite variance 0 �
Var(N(0)) , 1, and is independent of fA(t), t ¼ 0, 1, . . .g.
Assume that fA(t), t ¼ 0, 1, 2, . . .g are independently and identi-
cally distributed (iid) and that each A(t) has finite mean M ¼
E(A(0)) . 0 and finite variance V ¼ Var(A(0)) . 0. Then, the
limits in (2.2) and (2.3) exist and

logm ¼ log EðAð0ÞÞ ¼ log M ðA 1Þ

and

logb ¼ log E½ðAð0ÞÞ2� ¼ logðV þM2Þ: ðA 2Þ

Proof. From (2.1), because A(t) are iid,

EðNðtÞÞ ¼ ½EðAð0ÞÞ�tEðNð0ÞÞ ¼MtEðNð0ÞÞ: ðA 3Þ
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Taking the log of both sides gives

log EðNðtÞÞ ¼ t log Mþ log EðNð0ÞÞ: ðA 4Þ

Dividing both sides by t and letting t!1 gives (2.4).

As N(0) and
Qt�1

t¼0 AðtÞ are independent, the variance of

their product is [26, p. 709, eqn (2)]

Var(NðtÞ) ¼ Var Nð0Þ �
Yt�1

t¼0

AðtÞ
 !

¼ f½EðNð0ÞÞ�2 þ Var(Nð0Þ)gVar
Yt�1

t¼0

AðtÞ
 !

þ E
Yt�1

t¼0

AðtÞ
 !" #2

Var(Nð0Þ):

The variance of the product of iid variables A(t), t ¼ 0,1, . . . ,t,
is ([27, p. 218, eqn (4)]; [28, p. 55, eqn (1)])

Var
Yt�1

t¼0

A(t)

 !
¼
Yt�1

t¼0

M2
Yt�1

t¼0

V
M2
þ 1

� �
� 1

" #

¼M2t V þM2

M2

� �t

�1

" #
:

Hence

Var(NðtÞ)¼f½EðNð0ÞÞ�2þVar(Nð0Þ)gM2t VþM2

M2

� �t

�1

" #

þM2tVar(Nð0Þ)

¼f½EðNð0ÞÞ�2þVar(Nð0ÞÞgM2t VþM2

M2

� �t

�1

" #

� 1þ Var(Nð0ÞÞ

f½E(Nð0ÞÞ�2þVar(Nð0ÞÞg VþM2

M2

� �t

�1

" #
0
BBBB@

1
CCCCA:

ðA5Þ

Because V . 0 and M . 0 by assumption, (V þ M2)M22 . 1.

Hence, as t! 1, the last factor on the right converges to 1

because the fraction converges to 0. Hence

lim
t!1

1

t
log Var(NðtÞ) ¼ lim

t!1

1

t
log

(
f½EðNð0ÞÞ�2 þ Var(Nð0Þ)gM2t

� V þM2

M2

� �t

�1

" #)
: ðA 6Þ

Also

V þM2

M2

� �t

�1 ¼ fðV þM2Þ=M2gt½fðV þM2Þ=M2gt � 1�
fðV þM2Þ=M2gt ;

so

log
V þM2

M2

� �t

�1

" #
¼ log

V þM2

M2

� �t

þ log
½fðV þM2Þ=M2gt � 1�
fðV þM2Þ=M2gt

 !
:

lim
t!1

log
½fðV þM2Þ=M2gt � 1�
fðV þM2Þ=M2gt

 !
¼ log 1 ¼ 0: ðA 7Þ
Therefore,

lim
t!1

1

t
log

V þM2

M2

� �t

�1

" #
¼ lim

t!1

1

t
log

V þM2

M2

� �t

¼ logðV þM2Þ � 2 log M; ðA 8Þ

hence

lim
t!1

1

t
log Var(NðtÞ) ¼ 2 log Mþ logðV þM2Þ � 2 log M

¼ logðV þM2Þ ¼ log EððAð0ÞÞ2Þ: ðA 9Þ

This proves (2.5). A
(b) Taylor’s law
Theorem A.2. If TL applies to N(t) exactly for all t or in the limit
as t!1, then log b ¼ b log m. If log m= 0, then

b ¼ logb

logm
: ðA 10Þ

Proof. Divide log Var(N(t)) 2 b log E(N(t)) by t and let t! 1.

Then, from (2.6) and (2.7) and the definitions of log m (2.2)

and log b (2.3), log b ¼ 0þ b log m. A

Theorem A.3. Under the assumptions of theorem A.1, if M = 1,

(2.9) gives a unique pair of parameters such that N(t) obeys TL in
the limit as t!1, as defined in (2.7), with these parameters.

Proof. Define

g :¼ log½V þM2�
log M

: ðA 11Þ

Because M . 0, V . 0, M = 1 by assumption, g is well

defined. Then, raising both sides of (A 3) to the power g gives

½EðNðtÞÞ�g ¼Mtg½EðNð0ÞÞ�g;
log½EðNðtÞÞ�g ¼ g log EðNðtÞÞ ¼ gt log Mþ g log EðNð0ÞÞ:

Subtracting g logE(N(t)) from log Var(N(t)) gives

logVar(NðtÞ)�g logE(NðtÞ)

¼ logf½E(Nð0Þ)�2þVar(Nð0Þ)gþ2t logMþ log
VþM2

M2

� �t

�1

" #

þ log 1þ Var(Nð0Þ)
f½E(Nð0Þ)�2þVar(Nð0Þ)g½ððVþM2Þ=M2Þt�1�

 !

�gt logM�g logE(Nð0Þ)

¼ logf½EðNð0ÞÞ�2 þ Var(Nð0Þ)g

þ log 1þ Var(Nð0Þ)
f½EðNð0ÞÞ�2 þ Var(Nð0Þ)g½ððV þM2Þ=M2Þt � 1�

 !

� g log EðNð0ÞÞ þ log Mtð2�gÞ þ log
V þM2

M2

� �t

�1

" #

¼ logf½EðNð0ÞÞ�2 þ Var(Nð0Þ)g

þ log 1þ Var(Nð0Þ)
f½EðNð0ÞÞ�2 þ Var(Nð0Þ)g½ððV þM2Þ=M2Þt � 1�

 !

� g log EðNð0ÞÞ þ log
ðV þM2Þt �M2t

Mgt

" #
:



Table 1. Point and interval estimates of parameters in the Lewontin – Cohen model and a spatial Taylor’s law. (For the Lewontin – Cohen model, parameter
median values and 95% CIs from bootstrapping were recorded, because the distribution of each parameter was non-symmetrical. For the TL, b and log10 a were
estimated by fitting a straight line to the five data points, one point for each of the five most recent censuses (figure 3), using ordinary least squares. The CIs
were generated from normal sampling theory rather than by bootstrapping. For the data points, nonlinearity was checked using least-squares quadratic
regression on log – log coordinates. The coefficient of the squared term did not differ significantly from 0, so the null hypothesis of linearity was not rejected.
When the median values of M and V were used in the formula for g, g ¼ 1.6479, which fell within the bootstrapped 95% CI.)

model parameter point estimate 2.5% percentile 97.5% percentile

LC M (mean of A( p,t)) 0.9534 0.9280 0.9822

V (variance of A( p,t)) 0.0154 0.0069 0.0274

g ( predicted slope) 1.6538 0.6641 1.8768

TL b (least-squares slope) 2.6214 1.0728 4.1701

log10 a (least-squares intercept) 20.3289 20.6579 0

Table 2. Point and interval estimates of log variance ¼ g � log mean þ r(t) and log variance ¼ g � log mean where g and r(t) are derived from the
Lewontin – Cohen model ((A 11) and (A 12) respectively, see appendix A). (For every census, the 95% CI of log variance estimated from the LC model included
the observed log variance when the term þ r(t) was present and excluded the observed log variance when the term þ r(t) was absent. Thus, the LC model
could account for the observed log variance when, and only when, the correction þ r(t) for finite time was included.)

year
observed
log mean

observed
log
variance

log variance 5 g 3 log mean 1 r(t) log variance 5 g 3 log mean

median
2.5%
percentile

97.5%
percentile median

2.5%
percentile

97.5%
percentile

1988 20.1631 20.7659 21.0407 21.3898 20.7017 20.2698 20.3063 20.1216

1994 20.1611 20.8041 21.0032 21.3500 20.6682 20.2665 20.3026 20.1201

1999 20.1816 20.7327 21.0050 21.3552 20.6542 20.3003 20.3410 20.1354

2004 20.2458 20.9661 21.0817 21.4457 20.6723 20.4066 20.4617 20.1833

2009 20.2823 21.0860 21.1156 21.4851 20.6776 20.4670 20.5303 20.2105
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The definition of g in (A 11) implies

log
ðV þM2Þt �M2t

Mgt

" #

¼ log
ðV þM2Þt �M2t

Mðlog½VþM2�= log MÞt

" #
¼ log½ðV þM2Þt �M2t�

� log½V þM2�
log M

t log M

¼ log½ðV þM2Þt �M2t�

� t log½V þM2� ¼ log
ðV þM2Þt �M2t

ðV þM2Þt

" #

¼ log 1� M2

V þM2

� �t
" #

:

Define

rðtÞ :¼ log 1� M2

VþM2

� �t
" #

þ log 1þ Var(N(0))

f½E(N(0))�2þVar(N(0))g½ððVþM2Þ=M2Þt�1�

 !
:

ðA12Þ

Because M . 0 and V . 0, 0 , M2/(V þ M2) , 1. As t! 1,
r(t)! 0, and

log VðNðtÞÞ � log½V þM2�
log M

log EðNðtÞÞ

! logf½EðNð0ÞÞ�2 þ VarðNð0ÞÞg

� log½V þM2�
log M

� �
logðEðNð0ÞÞÞ:

Therefore, the LC model implies that N(t) satisfies TL in the

limit as t!1 with exponent b and coefficient a given

by (2.9). Because TL holds, theorem A.2 implies that the expo-

nent b of TL is uniquely specified by (A 11) or the right-hand

equation in (2.9). A

For finite t, with these values of a and b, we have exactly,

with the residual r(t) defined in (A 12),

log VðNðtÞÞ � b log EðNðtÞÞ ¼ log aþ rðtÞ: ðA 13Þ

Corollary of theorem A.3. Under the assumptions of theorem
A.3, the LC model implies TL for N(t)/N(0) in the limit as t! 1,

with coefficient a ¼ 1 and exponent b given by (2.9).

Proof. Define h(t) ¼ N(t)/N(0) for t ¼ 0, 1, 2, . . . . Then

h(0) ¼ 1. Dividing both sides of (2) by N(0) yields

NðtÞ
Nð0Þ ¼hðtÞ ¼Aðt�1ÞAðt�2Þ � � �Að0Þhð0Þ; t¼ 1;2; :::: ðA14Þ
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This is exactly the same as (2.1) when N(0) ¼ 1 with probability

1. The theorem implies that h(t) satisfies TL in the limit as

t!1 with exponent b ¼ log[VþM2]/logM and coefficient

a ¼ 122b ¼ 1. A

The initial density N(0) has no effect on b in the limit as

t!1 because b measures the multiplicative factor by which

variance of population density increases for a given multiplica-

tive factor of increase in the mean population density. That

multiplicative factor of increase does not depend on the starting

population density. Consequently, uncertainty in N(0) may

affect estimates of a but not estimates of b.

(c) Data analysis of Black Rock Forest
long-term plots

The six long-term plots analysed here had areas from 0.038 to

0.089 ha with an average area 0.053 ha. The areas did not

change over the years. Three plots were thinned prior to

the first census in 1931, and three plots were undisturbed

controls. From 1931 onwards, there were no further interven-

tions. Trees were censused in, or (in a few cases) within one

year of, the years 1931, 1936, 1941, 1946, 1954, 1961, 1965,

1973, 1978, 1983, 1988, 1994, 1999, 2004 and 2009. Most of

the intervals between censuses were 5 years. The initial popu-

lation densities in 1931 for the six plots were 922, 2351, 667,

1545, 2240 and 2412 stems per hectare, with mean 1690 and

variance 583 617.

In step 1, testing the LC model, we assumed time-intervals

were 5 years and used all censuses. The LC model assumed that

A( p,t) were identically distributed over plots p and time t. To

test this assumption over time, we compared the six values of

A( p,t)¼N( p,t þ dt)/N( p,t), p¼ 1, . . . , 6, for each of the 14 cen-

suses by one-way ANOVA by censuses, and found no

significant differences at the 0.05 level of significance. To test

whether each time-series A( p,t) were identical realizations for

each of the six plots, we also compared the 14 values of

A( p,t)¼N( p,tþ dt)/N( p,t), t¼ 1931, . . . , 2004, by one-way

ANOVA among plots, the pooled three thinned plots with the

pooled three control plots by one-way ANOVA between

thinned and control, and the plots within treatments (thinned

or control) by nested two-way ANOVA, and found no signifi-

cant differences in the mean values at the 0.05 level of

significance. ANCOVA showed no statistically significant differ-

ence in the slopes of regression lines fitted to the time-series of

A( p,t) from different plots or treatments. The augmented

Dickey–Fuller test gave no statistically significant evidence of

non-stationarity. Four tests (O’Brien, Brown–Forsythe, Levene

and Bartlett) were applied to test the homogeneity of variances

of A( p,t) by treatments, plots and censuses. None of the

tests rejected the hypothesis that the variance of A( p,t) in

the pooled three thinned plots was identical to that in the

pooled three control plots. The O’Brien, Brown–Forsythe and

Levene tests did not reject the hypothesis that variances of

A( p,t) over 14 censuses in each plot were identical. These

tests did not reject the hypothesis that fA(t)g were identically

distributed. However, the O’Brien, Levene and Bartlett tests

rejected ( p , 0.0001) the null hypothesis that the 14 variances

over plots of A( p,t) for each of the 14 censuses were identical.

The scatter of A( p,t) in 1965 (figure 1) was greater than the

scatter before or after. This instance seemed to be an isolated,

rather than a systematic, deviation from homogeneity of

variances, and we did not correct our critical values for
multiple simultaneous inference. We decided that the assump-

tion of identical distributions was close enough to be a useful

description of the data.

The LC model also assumed that fA(t)g were indepen-

dently distributed. We tested this assumption in two ways.

First, for the time-series of 14 values of A( p,t) of each plot p
considered separately, the first-, second- and third-order

autocorrelations were not statistically significant at the 0.05

level of significance. Second, for every pair of distinct years

t1, t2, we computed the correlation between A( p,t1) and

A( p,t2), p ¼ 1, . . . , 6. Since we observed A( p,t) in 14 years,

we had 14 � 13/2 ¼ 91 pairwise correlations, of which

seven (approx. 8%) were significant at the 5 per cent level

of significance. The proportion of significant tests had 95%

CI (0.0315, 0.1521), which is compatible with the null

hypothesis that the significant tests occurred by chance

alone. For every pair of different plots p1 and p2, 1 (approx.

7%) of 15 (¼ 6 � 5/2) correlations between A( p1,t) and

A( p2,t), t ¼ 1, . . . , 14 was significant at the 5 per cent

level of significance, likewise giving no statistically signifi-

cant evidence to reject the assumption that A( p,t) were

independently distributed over time and plots.

Failing to reject the assumptions of the LC model, we esti-

mated the mean M and the variance V of A( p,t) in each of 10

000 bootstrap samples (samples of each data point with equal

probability and with replacement) of the 84 observed values

of A( p,t) and recorded the median and 95% CIs. Then, from

the M and V for each bootstrap sample, we calculated from

(A 11) a value of g, which is the LC model’s prediction of

the exponent b of TL, and recorded the median and 95%

CI of the 10 000 bootstrapped values of g (table 1).

In step 2, testing the spatial TL, we used the data from

the five most recent censuses. In each selected census year

(t ¼ 1988, 1994, 1999, 2004, 2009), we calculated a spatial

mean and a spatial variance of the population density ratio

N( p,t)/N( p, 1931) over six plots. A single linear regression

was fitted to the five pairs of log mean and log variance,

pooled from each census, and the regression slope and inter-

cept were estimated from normal theory (table 1).

TL was tested by applying linear regression to fit the log-

linear form (2.6). We could also have fitted the power-law form

(1.1) of TL by nonlinear least squares. However, tests of TL

using other data from BRF [29] found no material differences

between the results of these two modes of analysis, so we omitted

here the analyses using nonlinear least squares.

Linear regression assumes no uncertainty in the abscissa

of each data point [30]. But each study plot had uncertainty

in the abscissa, log10 mean population density (figure 3),

because the mean was estimated from the population density

ratio of six plots and was not known or controlled a priori.
The same problem arose in fitting allometric power-laws of

population density as a function of average body mass [31,

pp. 153–154]. Neglecting uncertainty in the abscissa underes-

timates the true slope [2,30]. However, the use of linear

regression was reasonable here because visual inspection

showed that the fitted straight line approximated the data

well (figure 3).

The bootstrap percentile method was applied to estimate

the CIs of M, V and g independently with 10 000 bootstrap

samples used for each [32]. Computations of ANOVA,

ANCOVA, homogeneity of variances, pairwise correlation,

linear regression and quadratic regression were carried out

using the JMP v. 9.0.2, analyze menu [33].
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