Carbon Storage in Temperate Forests: The Role of Biodiversity and Functional Evenness

Background:

- -Northeast forests are the one of the largest terrestrial C-sink in North America (Ciasis et al. 1995)
- -NPP drives this sink through storage and cycling of terrestrial biomass (which is composed in part of carbon)
- Forest ecosystems constitute 50% of global NPP and 80% of terrestrial NPP (Shimel 1995)

Questions:

- -How does biodiversity influence the capacity of this sink?
- -How will biodiversity change in the face of three different drivers?
 - 1. N-Deposition
 - 2. CO2 fertilization
 - 3. Sudden Oak Death

- statistics found in other forest ecosystems experiencing these drivers
- -Apply Framework set by Naeem and Wright (2003) using effect and response traits when measuring
- -Calculate resulting AGB in four different scenarios

Driver of biodiversity change (1)

(1) N-deposition

- 10 fold increase in N-deposition in some parts of the US (Aber et al. 2001)
- "N-saturation syndrome," tree mortality caused by excess N (Magill et al. 2004)
- Initial increase in NPP and can be expected in the short term
- Harvard Forest study found an average 30% increase in NPP over a 14 year study (Magill et al. 2004)
- Fast growing understory species account for most of this growth

Driver of biodiversity change (2)

(2) CO2 increases

- DeLucia and Moore (2005) found that under levels of CO2 projected by 2050 (550 ppm) deciduous tree species experienced a 44% growth rate
- 23% increase in NPP at 550 ppm CO2 (Norby et al. 2005)
- CO2 fertilization favors shade tolerant trees (Aber
- Most studies done on immature trees
- Mature stand experienced short-term enhanced growth rates (Korner et al. 2005)

Chronic N-Deposition at the Harvard Forest (Magill et al. 2003)

Web-FACE (free air CO2 enrichment) Crane and tubes releasing CO2 in 35-meter-tall temperate forest stand (Korner et al. 2005)

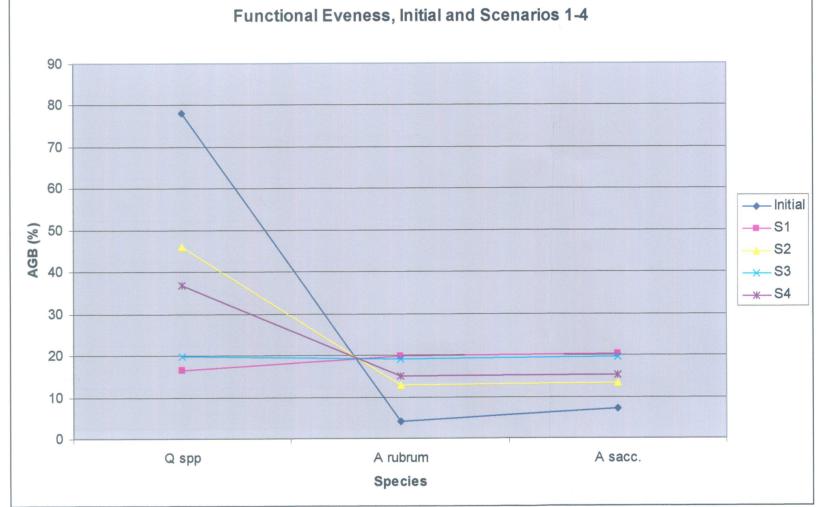
Results of Sudden Oak Death in Western Forests (Rizzo and Garbelotto 2003)

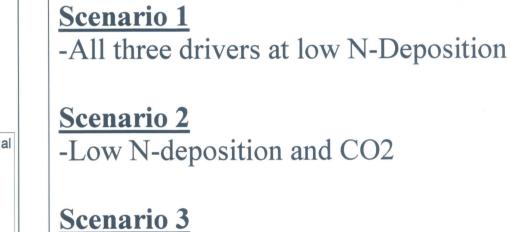
ramorum in (A) Marin Co., CA and (B) Monterey Co., CA. (Photos by D. Rizzo,

Driver of biodiversity change (3)

(3)Invasive exotic (*Phytophthora ramorum*)

- Fungal pathogen has caused upwards of 66% mortality amongst Quercus species in western forests (Rizzo and Garbelotto 2003)
- Eastern Quercus species shown to be susceptible (Maloney et al.
- Forests under abiotic stress (N and CO2 saturations) more susceptible to infection (Rizzo and Garbelotto 2003)
- P ramorum targets trees with largest DBH
- Time of tree mortality post infection varies from months to years Important in terms of soil respiration rates and SOM decomposition


Functional traits of each species and functional groups


	Driver 1a N-Deposition (high)	Driver 1b N-Deposition (low)	Driver 2 CO2 fertilization	Driver 3 Invasive Exotic (P ramorum)
Spp	Response Trait (N-high)	Response Trait (N-low)	Response Trait (CO2)	Response Trait (<i>P ramorum</i>)
Q spp	N-tolerance	N-tolerance	Photosynthetic rate	Susceptibility
A .r.	N-tolerance	N-tolerance	Photosynthetic rate	na
A sacc.	N-tolerance	N-tolerance	Photosynthetic rate	na
B lenta	N-tolerance	N-tolerance	Photosynthetic rate	na
Spp	Effect Trait (N-high)	Effect Trait (N-low)	Effect Trait (CO2)	Effect Trait (<i>P ramorum</i>)
Q spp	% Mortality (36.8)	% Mortality (22.2)	% growth increase (23)	% mortality (66)
Ar.	% Mortality (72.7)	% Mortality (19.1)	growth rate (high)	na
A sacc.	% Mortality (na)	% Mortality (na)	growth rate (med.)	na
B lenta	% Mortality (100)	% Mortality (65)	growth rate (high)	na

Zach Wolf Undergraduate Columbia University

Recruitment rates from Taylor and Lorimer (2003) and gap capture rates from Lorimer (1981) used to construct a new canopy composition

Species	Recruitment Rate	Gap Capture Rate (%)
Q spp	Low	Low (20)
A rubrum	High	High (80)
A sacc.	Medium	Medium (50)
B lenta	Medium	Medium (50)

-Sudden Oak death

Scenario 4 -High N-deposition and CO2

Results:

- -Initial reduced functional magnitude (Cstorage)
- -Increase functional evenness and distribution of AGB
- -Concentration of ecosystem function in one functional group (Q spp) creates instability in the face of the modeled drivers

Management and conclusions:

- "Long-term rates of C sequestration can be deliberately manipulated through forest management" (Barford et al. 2001, p. 1690)
 - 1. Manage for long-term soil storage (2/3 of terrestial carbon
- Avoid bare ground, net release of C and loss of SOM
- Maintain canopy structure
- Selectively log Quercus species if P ramorum is immanent
- Manage for a "wave" of species loss rather "flash"
- This entails enhancing ecosystem stability by distributing ecosystem function amongst species outside of Quercus functional group
- 7. To balance C-storage and ecosystem function maintain a functional diverse mid-aged stand (period of maximum Csequestration) over the long-term

Methods:

- -Using data from BRF apply mortality and growth
- ecosystem function